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A method is considered for solution of the converse thermoelasticity problem of  finding the temperature field 
on the basis of  measurements of deformations at certain points of  the body. 

The problems of  thermal conductivity theory are usually related to finding a temperature field on the basis of 
specified boundary heat-exchange conditions. In practice, situations occur where determination of  these conditions is 
impossible or very difficult, and it is necessary to use certain indirect measurements, in particular, measurements of  body 
deformation, to determine the temperature field. In this case the problem of  finding the temperature field is in essence a 
converse thermoelasticity problem. In a number of cases the solution of  such a problem is the basis for making automation 
of  experimental measurements mathematically possible. 

In the present study we will consider a numerical method for reestablishing the temperature field from measurements 
of  the deformation of  a plate (0 ~< z ~< L) of  arbitrary form. The plate is free, i.e., there are no stresses on the boundaries 
z = 0 and z = L. The plate deformation is caused by a change in temperature T over thickness z and time ~-, while the 
effect of  deformation on temperature and inertial effects may be neglected. The physical characteristics of the plate material 
are specified. The temperature at the initial time 7" = 0 is known 

T ( z ,  O)= q)(z), ( l )  

as is the temperature on the lower boundary 

T(O, +) = ,(~).  (2) 

Moreover, one of the components of the displacement, say that in the z direction, is known for an arbitrary point  of the 
body with coordinates x = Xo, y = Yo' z = z o relative to a fixed point  

~,(x0, y0, z0, +) --- @,(~). (3) 

It is necessary to determine the temperature T(L, r) on the upper boundary (z = L) of  the plate 

T (L, z) = T b (~). (4) 

If  the function T b (r) is found in some approximation,  then determination of the temperature fields, stresses, or 
deformations given the conditions of  Eqs. (1), (2), (4) becomes a direct thermoelasticity problem, the solution of which 
presents no difficulties. 

Below we will consider a method of  finding the functions Tb(r) based on the condit ion that the calculated displace- 
ment  component  w c corresponding to the function at the point  (xo,  ~1o, zo )  must coincide with the specified functions 
~b, (r) at a set of  points Q, i.e., 

I~'c(X0, Y0, z0, T ) ' r  ~CQ, (5) 

where e is some small number, which is taken to be 10-9-max[~t(~)I in the calculations. The set Q can be defined as the 
minimum number of  points in the range of  variation of the variable r, which for all measured displacement values ensures 
fulfillment of the condit ion 

tI~c (xo, yo, zo, " 0 -  *, ('011 ~ ~, (6) 

where 6 is the measurement uncertainty of the original data, in particular t)~ (r). 

The search for the function T b(7") involves multiple calculation of  temperature fields and displacements using condi- 
tions (1), (2), (4). In the method considered here it is not  significant whether this direct thermoelasticity problem is solved 
numerically or analytically. For  practical realization of  the method the temperature Tz h+t ~ T(z  i, Tj~+l) at internal points 
of the region z~ = i h ,  i = 1 , 2  . . . .  , I ,  h := L / I ;  "c, = k l ,  k = 1, 2 ,  . . . ,  is found with an explicit  difference method 
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l k h (Ti+l T~) - -  '~P t Ti-l)], r~ +~ = T) 4- 2h2c)p) [(X) 4- k,+~) - -  t , 4- X , - , ) (T~- -  h 

i = 1 , 2  . . . . .  I - - 1 ;  

T~ = q)(z,), T~o +' = r T} +l = Tb(%+O. 

(7) 

(8) 

The thermal conductivity X, specific heat c, and density p may be functions of the coordinate z, time, or temperature. 

The displacements, stresses, and deformations may also be determined on the basis of an explicit difference method 
of solving the thermoelasticity equations in displacements, using the establishment method [ 1 ]. For simplicity., we will 
assume that the modulus of  elasticity E, the thermal expansion coefficient a, and Poisson ratio v are constants. In 
this case the relationship between displacements, stresses, and deformations, on the one hand, and the temperature T(z, r), on 
the other, can be expressed analytically [2], with the displacement component along the z axis being 

where 

w(x, y, z, ~ ) =  6Mr 1 { 
_ EL..__.. ~ (x z + y z ) +  (1 - -v )  E ( 1 +  

+v)c~E f T d z - - v  ( - ~ - - - 1 t  3v(2z--L)ZL s Mr / '  

L 
-5- 

(9) 

L L 

NT = aE ,f Tdz; MT = ~E S Tzdz. 
0 0 

The search for Tb(r) is performed by steps Ar along the r axis, with Ar being chosen from the condition that the thermal 
perturbations developing within the period Ar at the boundary z = L must manifest themselves sufficiently at the boundary 
z = 0. Control calculations show that the step AT must satisfy the inequality A Fo = A'c~./cpL~ 0.3. This limitation does 
not permit recourse to a linear approximation of  the function T b in the interval At. We write the function T b in the interval 
"c~ < "c < "c~ + A'c in the form of a power series 

Tb  (T) ~- aSo @- a~ (T - -  T~) + aS2 (T - -  T~) (T - -  "C~) @ . . . .  [- Os n (T ~ T~) (T  - -  "C~) . . .  (T - -  T s _  1 ) @ . . .  (1  O) 

This expansion is convenient in that the terms of the series with ordinal number r > m have no effect on the value of the 
function T b at the points ,~,  z~ ..  T ' Each coefficient a s of series (10) corresponds to a definite point # of the 

s s interval [T0, T 0 + AT] �9 

Results of  numerical experiments have shown that if the change in the temperature field is not too abrupt, it is 
sufficient to retain only the first three terms in the series of  Eq. (10). For the sake of  simplicity, in the future we will 

, s correspond to the points z ' ' ' , consider just this case. The coefficients a~, a~, and a 2 0, "co + AT, and % + AT/2 respectively. 

Initial condition (1) defines the value of  T b (0) = a0~ = r (L).  We assume that the function Tb(r) in the interval 
['c~-~, T3 -~ + AT] has been found, and that the function must be defined in the interval [T~, "ca + AT] . Numerical experi- 

ments have shown that for accuracy and economy of the solution it is desirable to set z~ = z~-t + A-c/2. Then Tb(T~) -- 

a~ = Tb(T~-~+ AT/2), i.e., the coefficient a~ can be considered a known quantity in finding the function Tb(r) in the interval 

[%,~ "~ + AT] The coefficients a is and a2S are determined by iteration, with axo ) anda~l~) in the first approxi- 

mation. Assuming that in the interval [z~, ~; + M-] the function Tb(1)('r) is known in the first approximation, we solve the 

direct thermoelasticity problem in the same interval, and use Eq. (9) to define the displacement wo)(~o, Yo, z0, ~ + A'c) 
in a first approximation. The difference between the displacement w(~; (x0, Yo, zo, "c],,), m = 1, 2, calculated in the n-th 

approximation at the point ~m and the specified displacement ~1 (~m) is used as an unbalance signal to obtain the following 

approximation of  the coefficient a s which is then set in correspondence to the point ~ : m ( n + l ) '  

1 (11) = w + [ ~ 1  (x0, v0, z0, "c~)-- ~,(%~,)1 v' " aSn(n+I ) re(n) m(tz) 

Here v~(~) is the absolute rate of  change of  the function w(xo, Y0, Zo, "c;',,) with respect to the quantity aSm : 

[w.,~ (xo, Vo, zo, %)--w<~-~> (Xo, yo, zo, T~) 
~3Sz(n) = as - - a  s , n = l ,  2 . . . . .  

m(n) ~m(n--I ) 
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TABLE 1. Comparison of Solution of  the Converse Thermoelastici ty 
Problem (CTP) with Perturbed Initial Data to Exact Solution 

0,15 
0,45 
0,75 
1,05 
1,35 
1,65 
1,95 
2,25 
2,4 
2,7 
3 
3,3 
3,7 
3,9 
4,2 
4,5 

T (L, x) 

1,414 
1,840 
1,606 
0,994 
0,497 
0,439 
0,780 
1,212 
1,357 
1,394 
1,152 
0,847 
0,704 
0,792 
1,008 
1,179 

Values of T(L, "r) obtained by solution of CTP 

bs=blo=0; bs=0; ~=0; bs=bt o~0; 
~=0 blo=0,1; btl=10 ~=0, 1 

1,417 
1,879 
1,642 
1,010 
0,484 = 
O, 426:. 
0,765 
1,214 
1,369 
1,416 
1,167 
0,848 
0,691 
O, 780 
1,022 
1,188 

I, 471 1,456 
1,907 1,796 
1,598 1,701 
0,971 1,009 
0,518 0,443 
0,457 0,448 
0,738 0,740 
I, 159 1,003 
1,407 1,338 
1,380 1,454 
1,119 1,150 
0,871 0,833 
0,747 0,619 
0,772 0,753 
0,946 0,987 
1,173 1,203 

bs=0,1 ; bg=100; 
b,o=0,1 ; b,t=l O; 

~=0,1 
/ 

1,511 
1,823 
1,657 
0,969 
0,777 
0,500 
0,723 
0,148 
1,376 
1,418 
1,103 
0,857 
0,778 
0,751 
0,946 
1,154 

This last formula cannot be used to determine the rate v s which is taken equal to the corresponding rate v s-x in the re(l) '  m 
previous step. 

After  successive approximations for a] have achieved satisfaction of  Eq. (5) at r = r~ + h r  , a second approxima- 
s are performed with s The subsequent approximations for a t , as in the case of  a 1 tion is performed for the coefficient a 2 . 

use of  Eq. (11), based on satisfaction of Eq. (5) at the point  r 0~ + h~/2 of  the interval [r~ , ~ 0 ~  ' A~]. After  each change 

of the coefficient a~ an iteration cycle is performed to determine the value a~ a ensuring satisfaction of  Eq. (5) at the point  

�9 ~ + A~ . Then a subsequent approximation for the coefficient a t is performed. The search for the function T b (r) in the 

interval [~0' #o + At] is terminated when condit ion (5) is satisfied at both the point  r~ + A~, and the point  r~ + A-c/2. 

To test the method described above, the following numerical experiment was performed. Initially, using Eqs. (7)-(9) 
the direct thermoelasticity problem was solved for the following initial conditions: 

( p ( z ) = l ;  $ ( * ) = l + b i t ;  T b ( z ) = e x p ( - b 2 r ) s i n b a r ;  

L 6c~ 
Zo-- - - ;  - -  (x2o-t- y2o)= b~; h =  --L--L = 0 , 1 ;  l = 0 . 3 . 1 0 - z ;  

2 L 3 10 

co = 1 ; L = b5 + brr + bT~ z, b v = const, ? = 1, 2, . . . .  

To establish the effect of  inaccuracy in initial data measurement on the inaccuracy of  the desired quantities in the 
functions ~(z) and ~(r) and also on the function ~ ( x ) =  w (xo, yo, Zo, 4) found by solution of the direct problem, perturba- 
tions were imposed. The temperature field at the initial moment  was perturbed by replacing the function ~ z )  in Eq. ( I )  
by another function ( p ( z ) ( l + b 8  sin bgz), b8=0--0.15, bg=0- -100 .  The temperature at the boundary z = 0 was perturbed 

by adding to ~(r) the function ~b,0 sin b,iz. The displacement function ~1 (r) was perturbed by using a pseudorandom 

number generator, producing numbers distributed by a normal law with mean relative error ~ = 0-0.3. 

Then, using the method described, the converse thermoelastici ty problem was solved for the perturbed initial data 
and the function T(L, r) determined. The lat ter  was compared to the exact function Tb('r) , whichwas used for solution of 
the direct problem. 

The numerical experiment for specified values of  b v on a grid I = 10 with change in Fourier  number Fo = ;~r/cpL a 

over the interval 0 < Fo < 5 required 10 min of  machine time on a BI~SM-4 computer.  Each time step ( ~ ,  ~ + A x ) ,  

where A Fo =~.A-c/cpLZ= 0.3, required 4-5 iterations for determination of  the coefficients a] and a t . The error in solving 

the converse problem for unperturbed initial data was practically the same as the error in solving the direct problem on the 
same grid. Table I presents the results of  calculations for cases where the boundary problems of the converse problem are 
specified exactly or with a certain uncertainty.  Uncertainty in specification of the initial data ~(Z) proves to have an effect 
on the solution only in the case of relatively low values of the Fourier  number Fo < 0.5. 
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Numerous calculations have shown that the error of  the solution usually does not exceed me error in specification 
of  the boundary conditions over a wide range of  variation of  the latter. This testifies to the effectiveness of the solution 
method. 
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OPTIMIZATION OF MULTILAYER THERMAL INSULATION 

V. V. Mikhailov UDC 536.2:51.380.115 

An iteration method is developed for determination of  the thicknesses of  layers of  a multilayer thermal 
insulation with minimum mass, with consideration of  temperature limitations. The penalty function 
method is employed. 

Coating of  surfaces by layers of  thermal insulation is a widespread method of  protecting thermally stressed construction 
details from the direct action of  a high-temperature medium. One must then select the most rational variant of insulation, 
i.e., optimize the insulation. Often the mass of  the insulating material can be considered as the optimization criterion. 

We will consider the problem of heating of  a multilayer thermal insulation, consisting of n layers of  various materials 
of thickness hi, i = 1, 2, ..., n. Thermal contact between layers will be assumed ideal: 

C'(T) a r _ a  (z~(r) a_~g) 
at ay 

Y i : l<y<Yi ,  0 < t ~ < t e ,  i = l ,  2 . . . . .  n, 

T(y, O)=q~(y), Y o ~ Y ~ Y . ,  

--).~(T) aT(Yo, t) --qo(t), t>O, 
ay 

(1) 

(2) 

(3) 

_Z,,(T)'aT(Y,, t) - -q , ( t ) ,  t > 0 ,  
09 

T(Y,--O, 0 = T ( Y ~  ,'--0, t), i = 1 ,  2 . . . . .  n - - l ,  t > 0 ,  

~/(T) OT(Yi n O, t) _ 2]+1 (T) OT(Yi 4- O, t) 
a y  ay ' 

i = 1 ,  2 . . . .  , n - - l ,  t > 0 ,  

(4) 

(5) 

(6) 

where C z (T), ~J (T), f~, (y), q0 (t), q.  (t) are known functions. 

It is necessary to determine the layer thicknesses h~= Y~--Y~-I. i=  1, 2 .. . . .  n , which minimize the mass of the 
thermal insulation with consideration of  temperature limitations in the seams between the layers. Thus, it is necessary to 
find the minimum of the function 

lz 

M ( h ) =  ~ p~h i (7) 
i = l  

given Eqs. (1)-(6) and the limitations 
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